Osteoblastoma of the Cervical Spine: A Case Report

Servikal Omurga Osteoblastomu: Olgu Sunumu

Melih Bozkurt¹, Mevci Özdemir², Gökmen Kahiloğulları¹, Nihat Egemen¹

Osteoblastoma of the cervical spine extending from the C4 vertebral body to the paraspinal area is reported. Clinical, radiological and histological characteristics of the lesion are presented. The tumor’s location, extension to the paraspinal area and response of the adjacent soft tissues are discussed.

Key Words: Osteoblastoma, Cervical Spine, Bone Tumor

Osteoblastoma of the cervical spine extending from the C4 vertebral body to the paraspinal area is reported. Clinical, radiological and histological characteristics of the lesion are presented. The tumor’s location, extension to the paraspinal area and response of the adjacent soft tissues are discussed.

Case Report

A 13-year-old girl was admitted to the hospital for investigation of spasmodic torticollis and disabling neck pain for 13 months. There was no history of prior trauma or any other disease. On physical examination, a mild spasmodic torticollis was found. Neurological examination was normal. Blood chemistry and cervical X-ray were normal. computerized tomography (CT) demonstrated a lesion from the left side of the C4 vertebral body, with sclerosis band and inhomogeneous matrix ossification (Figure 1a). T2-weighted magnetic resonance imaging (MRI) revealed hyperintense mass with reactive hyperintense signal in the paraspinal muscles (Figure 1b). Sagittal reconstruction CT revealed a bony lesion of the C4 vertebral body (Figure 1c). Digital subtraction angiography (DSA) revealed compression of the left vertebral artery and flushing of the lesion (Figure 1d).

Left-sided anterior approach was chosen for the lesion. An oblique incision was used in front of the sternocleidomastoid muscle. Left common carotid artery, internal jugular vein, and vagal and phrenic nerves were exposed. The esophagus, trachea and common carotid artery left in the medial and sternocleidomastoid muscle left in the lateral side. Longus colli muscles were stony and rough. C3-4-5 vertebral bodies were exposed. The lesion was found to originate from the vertebral body in front of the transverse foramen of C4. The tumor was removed totally with curette. Pathologic examination revealed osteoblastoma and...
inflammatory reaction and atrophy of the muscles (Figure 2). Neck pain and spasmotic torticollis resolved after surgery. There were no neurological deficits, and postoperative CT revealed total excision (Figure 3).

Discussion

Osteoblastoma accounts for approximately 3% of benign and 1% of all primary bone tumors (7). The spine is the most frequently affected, accounting for about 30%-40% (4). Osteoblastoma occurs predominately during the first two decades, in accordance with our case. They occasionally originate in the posterior vertebral elements, especially in the spinous processes and laminae (6, 8). While involvement of the vertebral body is frequent, osteoblastoma originating only in the vertebral body is rare (9). In our case, the tumor originated from the left side of the vertebral body in front of the transverse foramen of C4 and extended to the paraspinal area.

Presenting symptoms with osteoblastoma of the spine are localized, increasing pain, as in this case (4, 5, 6). Non-specificity of symptoms was neglected by the physician, contributing to the delay in diagnosis for 13 months. Neurological deficit was not seen in our patient because of the extension of the tumor to the paraspinal area.

The lesions appear lytic and expansive on plain radiographs (7). Matrix mineralization occurs in nearly 55% to 72% of the cases (6, 7). Computerized tomography is generally informative about the lesion. Magnetic resonance imaging can provide additional information regarding the spinal cord and nerve root and neighboring soft tissue reaction (10).

Osteoblastomas involving the adjacent soft tissues have been identified (11). In the case presented, the adjacent soft tissue reaction was clearly seen (Figure 1b).

Treatment of cervical spine osteoblastoma requires a complete surgical resection (12). The type of surgical approach and necessity for stabilization and fusion procedures must be considered individually in each patient. Treatment choice in recurrent osteoblastoma is reexcision (13). Radiation therapy may sometimes be considered as an adjuvant therapy (14).

Conclusion

We report a rare case of osteoblastoma originating from the vertebral body in front of the transverse foramen of C4 with severe vertebral artery compression. The patient was successfully treated by total excision of the tumor.
REFERENCES

2. Lichtenstein L. Benign osteoblastoma: a category of osteoid and bone forming tumors other than classical osteoid-osteoma, which may be mistaken for giant-cell tumor or osteogenic sarcoma. Cancer 1956; 9:1044–52.

